Radio frequency interference at QUASAR Network Observatories and next generation system for geodetic VLBI

G. Ilin, I. Rahimov, A. Tsaruk Institute of Applied Astronomy of RAS e-mail: igen@ipa.rssi.ru

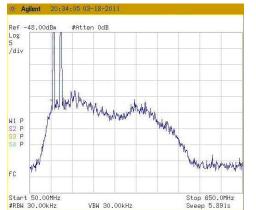
Several main principles are assumed as a basis of the new generation Russian VLBI network [1]:

- The network should have maximum longitudinal separation of sites for precise determination of Universal Time;
- Infrastructure of new observatories should be similar to the one of the QUASAR" Network.
- Equipment of observatories should be compatible with the VLBI2010 system and that of the "Quasar" Network;

From our point of view, there are fundamental limitations on possibility to realize this project – money and RFI environment.

First, you must construct new fast VLBI2010 antennas near the current location of the QUASAR network observatories or near the places with high organized infrastructure – communications etc. The places planned for first two radio telescopes (TTW- type, *Vertex Antennentechnik* GmbH) are Badary and Zelenchukskaya observatories.

The second is an automatic consequence of the first - RFI environment at the QUASAR network observatories or in some other places where new antennas can be placed is far from ideal [2, 3].


This is especially true for frequency S-band (2.15 \div 2,5GHz). As shown by measuring the RFI in "Svetloe" observatory in other frequency bands (3 \div 12 GHz) RFI level does not exceed the allowable values.

More detail RFI measurement in other places will be done in the near future.

Last time S-band is subjected by interference from UMTS mobile base station (BS): 1885÷ 2025MHz (from HS to BS) and 2110 ÷ 2200 MHz (from BS to HS). For example, spectrograms of S-band receiver IF signal of RT-32 Zelenchukskaya observatory are presented in fig.1. The same RFI situation is typical for all QUASAR network observatories.

There is one more strong RFI source in Badary observatory - DORIS transmitter at f1 = 2036.25MHz.

In practice, to reduce the impact of this RFI, and ensure the success of the standard VLBI observations, we are forced to install (after LNA) an additional low-pass filter and thus to limit the low frequency of the receiver IF bandwidth by value 2190MHz- see right spectrogram on fig.1.

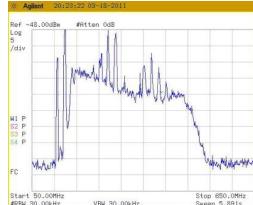


Fig1. Left: 13 cm receiver IF signal, left polarization, and right polarized signal (right) accompanied by wireless broadband access signal (?).

In the near future LTE- system is often branded "4G", appear in the range $2500 \div 2700 \text{MHz}$ (this project is started in Moscow region in April 2012!) and we will have only $250 \div 300 \text{ MHz}$ RFI-free bandwidth.

To ensure compatibility of observatory equipment with VLBI 2010 system we have two possibilities:

- to use narrow band feed + LNA
- wide band feed + LNA (+ RFI filtering system) [4].
 The first looks more realistic. From our point of view, the only way to find practical solution for realization VLBI2010 system is to use "narrow band technique", presented in [1, 5].

We have considered the problems associated with low-frequency range. All of the above should be applied to the X band, where there are radars - active sources of impulsive RFI. This fact also indicates a preference for the approach proposed (for more detail see poster [5]).

References

- [1] Andrey Finkelstein et al.: The New Generation Russian VLBI Network, IVS 2010 General Meeting Proceedings, p.106–110. (http://ivscc.gsfc.nasa.gov/publications/gm2010/finkelstein1.pdf)
- [2] Gennady II'in et al.: About the Compatibility of DORIS and VLBI Observations, IVS 2010 General Meeting Proceedings, p.180–183 (http://ivscc.gsfc.nasa.gov/publications/gm2010/ilin.pdf)
- [3] Gennadii Ilin. Radio frequency interference at QUASAR Network Observatories. 20th EVGA Meeting & 12th Analysis Workshop, Bonn, March 29 31, 2011, Proceedings, p105.
- [4] C. Beaudoin, B. Whittier. Sensitivity evaluation of two VLBI2010 candidate feeds. 20th EVGA Meeting & 12th Analysis Workshop, Bonn, March 29 31, 2011, Proceedings, p.71.
- [5] Alexander Ipatov, Vladimir Chmil, Oleksandr Pylypenko. Cryo-electronic radiometers for VLBI2010.
- IVS VLBI2010 Workshop on Technical Specifications (TecSpec), Bad Kötzting, Germany, 1-2 March 2012.