Chalmers presentations

- \bullet Per-Simon Kildal (40 min)
	- \bullet (Tutorial) Characterization of Feeds for Radio Telescopes (including combination feeds)
- 12:30 Lunch
- Per-Simon Kildal (15min)
	- \bullet Introduction to Design of Eleven Feed for SKA and VLBI2010
	- Selection of Geometry and Port lay-out
- \bullet Leif Helldner (15min)
	- Cryogenic and Mechanical Design for the Eleven Feed
- \bullet Jian Yang (15min)
	- Numerical Optimization of log-Period Antennas and Measurements
- \bullet Per-Simon Kildal (10min)
	- \bullet Summary of Performance and What Next

Characterization of Feeds for Radio Telescopes

Per-Simon Kildal Chalmers University of Technology 41296 Gothenburg, Sweden www.kildal.se

Traditional characterization not good enough for diagnosis

- Traditionally feeds where characterized only by the feed illumination taper in Eand H-planes, and the E- and H-plane phase centers
- This is OK for traditional rotationally symmetric feeds, but NOT for modern com pact or wideband feeds
- Then, we need to a better diagnosis approach

Content of tutorial

- •Radiation field function (phase ref point)
- BOR antennas and BOR1 efficiency
- Subtended half angle versus F/D
- • Feed efficiency and subefficiencies
	- Polarization, Spillover, Illumination, Phase (phase center)
- •Blockage and subreflector diffraction
- • More efficiencies_ _ _ _ _ _ _ _ _ _ _
	- Mismatch factor, radiation efficiency
- How do they affect G/Tsys
- Combination feeds and decoupling efficiency

Radiation field and radiation field function

When
$$
r = \sqrt{x^2 + y^2 + z^2}
$$
, the phase reference point of $G(\theta, \varphi)$ is origin (0,0,0)

Spherical coordinate system

 $\mathbf{r} = r \sin \theta \cos \varphi \hat{\mathbf{x}} + r \sin \theta \sin \varphi \hat{\mathbf{y}} + r \cos \theta \hat{\mathbf{z}}$

Equivalent forms of radiation field and its function

$$
\mathbf{E}(\mathbf{r}) = \frac{1}{r} e^{-jkr} \mathbf{G}(\hat{\mathbf{r}}) \qquad \mathbf{E}(\mathbf{r}, \theta, \varphi) = \frac{1}{r} e^{-jkr} \mathbf{G}'(\theta, \varphi)
$$

$$
\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}} = \hat{\mathbf{r}}r
$$

 $\mathbf{r} = r \sin \theta \cos \varphi \, \hat{\mathbf{x}} + r \sin \theta \sin \varphi \, \hat{\mathbf{y}} + r \cos \theta \, \hat{\mathbf{z}}$

$$
G'(\theta, \varphi) = G(\hat{\mathbf{r}})
$$

direction $\hat{\mathbf{r}}$

Polarization and polarization vectors

Co- and cross-polar radiation field functions:

$$
G_{co}(\theta, \varphi) = G(\theta, \varphi) \cdot \hat{co}^*(\theta, \varphi)
$$

$$
G_{xp}(\theta, \varphi) = G(\theta, \varphi) \cdot \hat{xp}^*(\theta, \varphi)
$$

Convenient choice for **linear y -polarization, i.e. polarization,** $\hat{\bm{co}}(\theta, \phi) = \hat{\bm{y}}'(\theta, \phi) = \sin \phi \hat{\theta} + \cos \phi \hat{\phi}$ **Ludwig's third definition:** $\hat{\bm{xp}}(\theta, \phi) = \hat{\bm{x}}'(\theta, \phi) = \cos \phi \hat{\theta}$ – sinφộ

For RHC pol : pol.:

$$
\hat{\boldsymbol{co}}(\theta, \varphi) = [\hat{\boldsymbol{x}}'(\theta, \varphi) - j\hat{\boldsymbol{y}}'(\theta, \varphi)] / \sqrt{2} = e^{-j\phi}[\hat{\theta} - j\hat{\varphi}]/\sqrt{2}
$$

$$
\hat{\boldsymbol{xp}}(\theta, \varphi) = [\hat{\boldsymbol{x}}'(\theta, \varphi) + j\hat{\boldsymbol{y}}'(\theta, \varphi)] / \sqrt{2} = e^{j\phi}[\hat{\theta} + j\hat{\varphi}]/\sqrt{2}
$$

Fourier expansion of radiation field function

•• The azimuth variation of the pattern can be expanded in a Fourier series in two ways, :

$$
\boldsymbol{G}(\boldsymbol{\theta},\boldsymbol{\phi})=G_{\!\text{co}}(\boldsymbol{\theta},\boldsymbol{\phi})\hat{\boldsymbol{co}}+G_{\!\text{xp}}(\boldsymbol{\theta},\boldsymbol{\phi})\hat{\boldsymbol{xp}}=
$$

$$
= \sum_{n=1}^{\infty} [CO_{sn}(\theta) sin(n\varphi) + CO_{cn}(\theta) cos(n\varphi)]\hat{co} + \sum_{n=1}^{\infty} [XP_{sn}(\theta) sin(n\varphi) + XP_{cn}(\theta) cos(n\varphi)]\hat{xp}
$$

•• Alternative which is consistent with spherical TE and TM mode **expansions (note that** $A_n(0) = B_n(0) = C_n(0) = D_n(0) = 0$ for $\theta = 0$ except when $n = 1$

$$
G(\theta, \varphi) = G_{\theta}(\theta, \varphi)\hat{\theta} + G_{\varphi}(\theta, \varphi)\hat{\varphi} =
$$

$$
\sum_{n=1}^{\infty} [A_n(\theta)\sin(n\varphi) + B_n(\theta)\cos(n\varphi)]\hat{\theta} + \sum_{n=1}^{\infty} [C_n(\theta)\cos(n\varphi) - D_n(\theta)\sin(n\varphi)]\hat{\varphi}
$$

Power integral

Total radiated power: •

$$
P_{rad} = \frac{1}{2\eta} \int \int_{4\pi} [|G_{\phi}(\theta, \varphi)| + |G_{\theta}(\theta, \varphi)|] sin\theta d\theta d\varphi
$$

• We will define a power integral: 2 $\sqrt{2}$ ∫ ∫ $P = | | [G_{\theta}(\theta, \varphi)]^{\mathsf{T}} + |G_{\theta}(\theta, \varphi)|^{\mathsf{T}}]$ 4π \int [|G_φ (θ, φ)| ҇ + |G_θ (θ, φ)| ҇] sinθdθdφ

- \bullet The power integral can also be calculated by:
	- $-$ aperture integration (for some aperture antennas)
	- integration over feed pattern (in reflector antennas)

Content of tutorial

- \bullet Radiation field function (phase ref point)
- BOR antennas and BOR1 efficiency
- Subtended half angle versus F/D
- • Feed efficiency and subefficiencies
	- Polarization, Spillover, Illumination, Phase (phase center)
- •Blockage and subreflector diffraction
- • More efficiencies_ _ _ _ _ _ _ _ _ _ _
	- Mismatch factor, radiation efficiency
- How do they affect G/Tsys
- Combination feeds and decoupling efficiency

Directivity and BOR1 efficiency

- Power integral: $P = \sum P_n$ *all ⁿ*
- Directivity 2 1 \rightarrow $BOR1$ $4\pi|G_{_{co}}(0)$ *BOR BOR* $D = \frac{4\pi\left|G_{_{co}}(0)\right|}{P} = e_{_{BOR1}}D$ π = - - - - - - - - =
- \bullet BOR1 efficiency $e_{\scriptscriptstyle BOR1}=$

$$
e_{BOR1} = \frac{P_1}{P}
$$

 \bullet ROR1 directivity $\qquad \qquad \Lambda^4 \pi \big| G_{co}(0) \big|$ BOR1 directivity D_{BOR1}

$$
D_{BOR1} = \frac{4\pi |G_{co}(0)|^2}{P_1}
$$

BOR antennas

- • We use the term BOR (Bodies Of Revolution) antennas to characterize antennas which material parts are completely rotationally symmetric around the same (z-)axis.
- • The field can still have an azimuth variation. The order of this variation is characterized by an index on BOR.
- •The abbreviation BOR is well known in MoM analysis.

Reflector antenna with dipole-disk feed

Corrugated horn antenna

BOR_0 antennas

- BOR = Body of revolution
- BOR $_{0}$ antennas (no azimuth variation):
- •Electric dipole excited:
- •• Magnetic dipole excited: $G_{\rm e}(\theta,\phi)$ - ${\rm B}_{0}(\theta)\hat{\theta}$ c dipole excited: $G_{\rm e}(\theta,$

 $\bm{G}_{\rm m}(\theta,\phi) \,=\, \textrm{C}_{_{\scriptscriptstyle{\text{O}}}}(\theta)\hat{\phi}$

•Example:

Biconical BOR₀ antenna

BOR_{1} antennas (excited for single phi-variation only)

•• BOR with y-polarized TE₁₁ type of excitation:

 $\boldsymbol{G}(\theta,\phi) \,=\, \text{G}_\text{E}(\theta)$ sin $\phi\hat{\theta} + \text{G}_\text{H}(\theta)$ cos $\phi\hat{\phi}$ E-plane pattern $\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$ H-plane pattern

•Co- and crosspolar components:

$$
\begin{cases}\nG_{\text{co}}(\theta, \varphi) = G_{\text{y}}(\theta, \varphi) \cdot \hat{\boldsymbol{c}} \hat{\boldsymbol{\sigma}}^* = G_{\text{co45}}(\theta) - G_{\text{xp45}}(\theta) \cos 2\varphi \\
G_{\text{xp}}(\theta, \varphi) = G_{\text{y}}(\theta, \varphi) \cdot \hat{\boldsymbol{x}} \hat{\boldsymbol{p}}^* = G_{\text{xp45}}(\theta) \sin 2\varphi\n\end{cases}
$$

• Co- and crosspolar components in 45 deg plane: •

$$
\begin{aligned} \n\overline{G_{\text{c045}}(\theta)} &= \frac{1}{2} [G_E(\theta) + G_H(\theta)] \\ \nG_{\text{xp45}}(\theta) &= \frac{1}{2} [G_E(\theta) - G_H(\theta)] \n\end{aligned}
$$

 $\overline{1}_{56}$ (ex. $\overline{2}$ (ex. $\overline{1}$) $\overline{1}$ The BOR1 relations

We can construct the whole radiation pattern if we know the coand crosspolar patterns in the 45 deg plane, or the E- and Hplane patterns.

BOR₁ antenna: Circular pol. (RHC)

 \bullet RHC co- and cross-polar patterns become:

$$
G_{\rm co}(\theta, \varphi) = G_{\rm c} \cdot c\hat{\boldsymbol{\theta}}^* = G_{\rm co45}(\theta)
$$

$$
G_{\rm xp}(\theta, \varphi) = G_{\rm c} \cdot \hat{\boldsymbol{x} \rho^*} = G_{\rm xp45}(\theta) e^{-j2\varphi}
$$

•Where as before:

$$
G_{c045}(\theta) = \frac{1}{2} [G_E(\theta) + G_H(\theta)] \qquad G_{xp45}(\theta) = \frac{1}{2} [G_E(\theta) - G_H(\theta)]
$$

The co- and xp- 45 deg patterns for linear polarization are equal to the co- and xp-patterns in all planes for circular polarization. Useful relation, but valid only for ideal BOR1 antennas.

SOFT choke horn feed: Constant beamwidth over 0.9-1.7 GHz (Ying, Kishk, Kildal, 1995)

Content of tutorial

- \bullet Radiation field function (phase ref point)
- BOR antennas and BOR1 efficiency
- Subtended half angle versus F/D
- • Feed efficiency and subefficiencies
	- Polarization, Spillover, Illumination, Phase (phase center)
- •Blockage and subreflector diffraction
- • More efficiencies_ _ _ _ _ _ _ _ _ _ _
	- Mismatch factor, radiation efficiency
- How do they affect G/Tsys
- Combination feeds and decoupling efficiency

Cassegrain antenna

Paraboloidal main reflector and hyperbloidal subreflector. Four independent parameters \quad D, d, θ_{0} , ψ_{0} Primary focal point, secondary focal point.

Content of tutorial

- \bullet Radiation field function (phase ref point)
- BOR antennas and BOR1 efficiency
- Subtended half angle versus F/D
- • Feed efficiency and subefficiencies
	- Polarization, Spillover, Illumination, Phase (phase center)
- •Blockage and subreflector diffraction
- • More efficiencies_ _ _ _ _ _ _ _ _ _ _
	- Mismatch factor, radiation efficiency
- How do they affect G/Tsys
- Combination feeds and decoupling efficiency

Paraboloid: Aperture or feed efficiency

$$
e_{ap} = \frac{4\pi \cot^2(\theta_0/2) \left| \int_0^{\theta_0} G(\theta_f) \tan(\theta_f/2) d\theta_f \right|^2}{2\pi \int_0^{\pi} \left[\left| G_{\cos 45}(\theta_f) \right|^2 + \left| G_{\sin 45}(\theta_f) \right|^2 \right] \sin \theta_f d\theta_f}
$$

Alternative expression based on aperture integration:

$$
e_{ap} = e_{sp} \left(\frac{\left(1}{A}\right) \left| 2\pi \int_{0}^{D/2} E_{co 45}(\rho) \rho d\rho \right|^{2} + \frac{\frac{1}{2}}{\frac{1}{2}} \right)
$$

$$
2\pi \int_{0}^{D/2} \left[\left| E_{co45}(\rho) \right|^{2} + \left| E_{xp45}(\rho) \right|^{2} \right] \rho d\rho \frac{\frac{1}{2}}{\frac{1}{2}}.
$$

Similar expressions exist for reflector antennas of other forms.

Paraboloid: Spillover efficiency

Cassegrain antenna

Paraboloidal main reflector and hyperbloidal subreflector. Four independent parameters, $\mathrm{d},\mathrm{\theta }_{0}$, $\mathrm{\Psi }_{0}$ Primary focal point, secondary focal point.

Subefficiencies of Paraboloids and Cassegrain Antennas

Similar formulas apply to general multi-reflector systems.

Factorization of feed efficiency: $\rm \; e_{ap}=e_{sp}^{\phantom i}e_{pol}^{\phantom i}e_{ill}^{\phantom i}e_{\phantom j}^{\phantom i}$

Spillover, polarization, illumination and phase eff.

Spillover efficiency $\rm\,e_{\rm s}$ Relative spillover power is given by 1 $-\,{\rm e}_{{\rm sp}}$ Typically between -0.05 dB and -0.5 dB. Major contributor to the antenna noise temperature.

Paraboloid and Cassegrain: Phase efficiency

$$
e_{\phi} = \frac{\int_{0}^{D/2} E_{\text{co45}}(\rho) \rho d\rho}{\int_{0}^{D/2} [E_{\text{co45}}(\rho)] \rho d\rho} = \frac{\int_{0}^{\theta_{0}} G_{\text{co45}}(\theta_{f}) \tan(\theta_{f}/2) d\theta_{f}}{\int_{0}^{\theta_{0}} [G_{\text{co45}}(\theta_{f})] \tan(\theta_{f}/2) d\theta_{f}}
$$

Typically better than 0.1 dB.

Use to define a phase center for the feed As the phase reference point that maximizes phas efficiency.

Paraboloid an d Cassegrain: Maximumdisplacemen t of phase center from focal point (for -0.1 dB phase eff.) versus subtended half angle

Hat feed in ring-focus paraboloid 1986

Low sidelobes Good efficiency

2007: Master student Denstedt im proved bandwidth of hat feed from 10 to 32%

Inherently this type of antenna has very low polarization and phase efficiency. Reflector shaped for high phase efficiency. Hat tuned for both good impedance match and high polarization efficiency.

Improved sector-shaped radiation pattern of horn with shaped lens

The horn with shpaed lens should give 0.5 dB higher illumunation efficiency than a horn with a normal feed pattern, but it did not.

Content of tutorial

- \bullet Radiation field function (phase ref point)
- BOR antennas and BOR1 efficiency
- Subtended half angle versus F/D
- • Feed efficiency and subefficiencies
	- Polarization, Spillover, Illumination, Phase (phase center)
- •Blockage and subreflector diffraction
- More efficiencies_ _ _ _ _ _ _ _ _ _ _
	- Mismatch factor, radiation efficiency
- How do they affect G/Tsys
- Combination feeds and decoupling efficiency

Geometrical aperture blockage model is often used, but does not work in small reflectors, see next slide

Blockage efficiency

The total efficiency with blockage can be written:

Multiple reflectionsand standing waves will moderate these values

In small primary- $T_{\text{This reason}}$ fed reflectors multiple reflections between feed and reflector can be used to increase gain

Resonant reflectors can be very efficient and influence system design strongly

Content of tutorial

- \bullet Radiation field function (phase ref point)
- BOR antennas and BOR1 efficiency
- Subtended half angle versus F/D
- • Feed efficiency and subefficiencies
	- Polarization, Spillover, Illumination, Phase (phase center)
- •Blockage and subreflector diffraction
- • More efficiencies_ _ _ _ _ _ _ _ _ _ _
	- Mismatch factor, radiation efficiency
- How do they affect G/Tsys
- Combination feeds and decoupling efficiency

Cassegrain: Subreflector diffraction and blockage

GO is only valid when reflectors are large. Finite diameter of subreflector cause edge diffraction losses. To keep losses smalld > 10λ ℓ $\sin(\psi_0)$

Content of tutorial

- \bullet Radiation field function (phase ref point)
- BOR antennas and BOR1 efficiency
- Subtended half angle versus F/D
- • Feed efficiency and subefficiencies
	- Polarization, Spillover, Illumination, Phase (phase center)
- •Blockage and subreflector diffraction
- • More efficiencies______________
	- Mismatch factor, radiation efficiency
- How do they affect G/Tsys
- Combination feeds and decoupling efficiency

System characteristics: Illustration of other subefficiencies

System performance: Figure of merit G/T

G/T is measured in dB/K.

System characteristics: Antenna temperature T

System characteristics: Figure of merit G/T

G/T is measured in dB/K. The most common reference point of G and T are at the input of the LNA.

G/T optimization of same small reflector with dipole-disk feed

Surface tolerances

Finite surface accuracy causes phase errors

 $\phi(\theta, \varphi) = (1 + \cos \theta) k \Delta z(\theta, \varphi) \approx 2k \Delta z(\theta, \varphi)$

Content of tutorial

- \bullet Radiation field function (phase ref point)
- BOR antennas and BOR1 efficiency
- Subtended half angle versus F/D
- • Feed efficiency and subefficiencies
	- Polarization, Spillover, Illumination, Phase (phase center)
- •Blockage and subreflector diffraction
- • More efficiencies_ _ _ _ _ _ _ _ _ _ _
	- Mismatch factor, radiation efficiency
- How do they affect G/Tsys
- Combination feeds and decoupling efficiency

Combination between choke horn and Eleven antenna

Some important points

- BOR1 efficiency is important in non-BOR feed geometries
- In BOR1 feeds the co- and cross-polar radiation patterns determines ALL characteristics (phase center, illumination and spillover efficiency)
- Phase center can be uniquely defined from phase pattern in 45 deg plane and the phase efficiency
- Center blockage can give strong dips in G/T
- Airy's disk type feed excitations are possible in Focal Plane Arrays, but not for single feeds
- Combination feeds (choke-horn and Eleven feed) are feasible for minimum relative frequency separation of 1.6

Eleven feed

