Multi-octave Balanced Low Noise Amplifier for Radio Astronomy Cryogenic Receivers

Inmaculada Malo Juan Daniel Gallego Carmen Diez González Isaac López-Fernández

Centro Astronómico de Yebes (CAY). Spain

IVS VLBI2010 Workshop on Future Radio Frequencies and Feeds (FRFF), March 19, 2009

YEBES RECENT PROJECTS

- HERSCHEL (HIFI) → (2-4 GHz & 4-8 GHz, low power dissipation)
- \blacksquare IRAM \rightarrow (1.2-1.8 GHz PB & 3.2-4.7 GHz PV upgraded to 4-8 GHz & 4-12 GHz)
- \blacksquare RT 40 m CAY \rightarrow (bands from 2.2 GHz to 26 GHz)
- \blacksquare ALMA \rightarrow (4-8 and 4-12 GHz)
- (ESOC)
 - X-Band \rightarrow (8.1-9.0 GHz, same as VLBI)
 - Ka-Band \rightarrow (25.5- 34 GHz)
- EUROPEAN PROJECTS
 - FP6: AMSTAR (IFs for IRAM & SRON 4-12 GHz)
 - FF7: AMSTAR + (IF integrated with mixer), APRICOT (33-50 GHz multibeam receiver)
- Over 1000 cryogenic amplifiers delivered to different projects.

Wide Band Amplifiers

- Wide instantaneous bandwidth high performance amplifiers for mmW IF amps development started ~ 10 years ago.
- 4-12 GHz is standard IF now in mmW receivers
- Problems:
 - Source of InP devices (NGST, HRL, ETH...)
 - High Input Reflection: cryogenic isolator needed (Pamtech)

HERSCHEL (HIFI)

To be launched April 16 2009 (delayed by 2 w)

Isolator contribution

$$\Delta T_c = \left(\frac{1}{G_{iso}} - 1\right) \cdot \left(T_{amb} + T_{amp}\right)$$

- Isolators measured @ 14 K
 (PAMTECH gives data @ 77 K)
- Good agreement between measurement and estimation of isolator noise
- Mean contribution 1.1 1.4K

ALMA

- Array of 50×12 m antennas in Atacama, Chile with up to 10 km baseline
- Covers all atmospheric windows up to 1 THz
- CAY contribution: Cryogenic IF amplifiers for all European channels (IRAM, Band 7 and NOVA, Band 9)

4-8 GHz ALMA amplifiers (Band 7)

4-8 GHz ALMA amplifiers (Band 7)

4-12 GHz ALMA amplifiers (Band 9)

4-12 GHz ALMA amplifiers (Band 9)

4-8 GHz/4-12 GHz amplifiers

X Band (8-12 GHz)

CHARACTERISTICS		
Working Band	8 – 12 GHz	
Working Temperature	15 K	
Dimensions	39 x 32 x 10.5 mm	
Transistors	InP HEMT 0.1 x 160 μm (TRW)	
PERFORMANCE		
Noise Temperature / Factor	6.5 K / 0.093 dB	
Gain (variation)	22.9 dB (± 1.4 dB)	
Output Reflection	>12.5 dB	

K-Band (18-26 GHz) VLBI

CHARACTERISTICS		
Working Band	20.5 – 24.5 GHz	
Working Temperature	15 K	
Dimensions	32 x 48 x 13 mm	
Transistors	InP HEMT 0.1 x 160 μm (TRW)	
PERFORMANCE		
Noise Temperature / Factor	8.9 K / 0.13 dB	
Gain (variation)	26.1 dB (± 1 dB)	
Input / Output Reflection	>7 dB / >8.5 dB	

ESOC (ESA)

- Deep Space Network
- Needed for missions like: Venus express, Mars express, Rosetta, Herschel, Plank
 - X-Band \rightarrow (8.1-9.0 GHz)
 - Ka-Band \rightarrow (25.5- 34 GHz)
- Specs on (X band):
 - Max. input without damage: 0 dBm
 - Output 1 dB compression: +5 dBm
 - Output IP3: +15 dBm

Towards wider band receivers

Present cryogenic VLBI front-end

Future VLBI 2010

Much wider band

Wide band Cryogenic Isolators

Needed to reduce input reflection of wide band low noise amplifier, but they..

- > are hard to procure
- have high insertion loss
- > show poor unit to unit repeatability

Proposal: Balanced amplifier

90° cryogenic hybrid

No commercially available for cryogenic temperatures.

CAY prototype:

Very compact, reliable and low thermal mass device.

Able to survive extreme thermal cycling.

Coupling and reflection: little temperature dependence.

37.5 mm

CAY hybrid

Comparison with best commercial unit

T _{amb} =20 Kelvin	Yebes (3 units built and tested)	Pasternack (Best commercial unit tested)
Return loss	<-22 dB	<-19 dB
Amplitud unbalance	±0.3 dB	±0.9 dB
Phase unbalance	±2°	±3°
Connector	Sliding pin (to survive thermal cycling)	Standard SMA

Ambient temperature (290 K)

Cryogenic temperature (20 K)

Almost no degradation in performance when cooled !!

Advantages of balanced amplifier

4-12GHz Prototype.
Results could be extrapolated to wider band.

Same S_{11} but LESS TN.

TN no dependent on the phase of input reflection coefficient (as isolator configuration).

Balanced amplifier is less sensitive to input mismatches: Tb (outgoing noise wave) is lower!

Test in cryostat:

More details in:

■ IMS 2009: "Cryogenic hybrid coupler for ultra low noise Radio Astronomy receiver", I. Malo, J. D. Gallego, M.C. Díez, C. Cortés, C. Briso, 2009 International Microwave Symposium, Boston, 7-12 June 2009.

■ ISSTT 2009: Improved Multi-octave 3 dB IF Hybrid for Radio Astronomy Cryogenic Receivers, I. Malo, J. D. Gallego, M.C. Díez, I. López-Fernández and C. Briso, 20th International Symposium on Space Terahertz Technology, Charlottesville, 20-22 April 2009

Conclusion

- Balanced amplifier vs. input cryogenic isolator:
 - Has lower noise temperature (about 40%).
 - Is less dependant on input mismatch.
- Balanced amplifier could be the best option where:
 - Noise performance is a must.
 - Too wide band to consider a cryogenic isolator practical.
 - Additional complexity and power dissipation is acceptable (not for FPAs)